MATH 2050 C Lecture 9 (Feb 15) Recall: $lim(x_n) = x \in \mathbb{R}$ iff $(\epsilon-k \det^2)$ \forall E > 0. \exists K \in N s.t. $|x_n - x| < \epsilon$ V n 3K A seq. (xn) is said to be convergent if such an $x \in \mathbb{R}$ exists (hence unique!). Otherwise. clivergent. Question: (1) When does lim (xn) exist? (2) If exists, how to compute the limit? $\begin{array}{ccc} \S & \text{Limit Theorems} & (\S & 3.2) & \text{indeg of } n \end{array}$ \blacklozenge Def²: (x_n) is bounded if $\exists M > 0$ st $|x_n| \leq M$ $\forall n \in \mathbb{N}$ Pemark: This is the same as saying that the subset $\{x_n \mid n \in \mathbb{N}\}\subseteq \mathbb{R}$ is bounded. $Thm: (x_n)$ convergent \Rightarrow (x_n) bounded Remark: The converse " \Leftarrow " is false. $E[q]$ $(X_{n}) = ((-1)^{n})$ is divergent but bdd.

Take $M':=max{M, |x|}>0$. By def² of limit. consider the error $\frac{\varepsilon}{2}$ 2M' > 0. $JK_I, K_2 \in \mathbb{N}$ st. $|x_n - x| < \frac{\epsilon}{2M}$ $\forall n \geq k_1$ and $19n-91$ < $\frac{2}{2}m$. $\forall n \geq k_2$ Choose K:= mex { K., K.} FIN st Vn? K, $|x_n y_n - xy| = |x_n y_n - xy_n + xy_n - xy|$ $= |y_{n}(x_{n}-x) + x(y_{n}-y)|$ \leq $|y_{n}| \cdot |x_{n} - x| + |x| \cdot |y_{n} - y|$ $\leq M \cdot |x_n - x| + |x| \cdot |y_n - y|$ M' . $|X_n - X| + M'$. $|Y_n - Y|$ $\langle M': \frac{\epsilon}{2M'} + M': \frac{\epsilon}{2M'} = \epsilon$ $\mathbf{\hat{u}}$ O $Clain: \left| \lim_{y \to 0} \left(\frac{x_n}{y_n} \right) \right| = \frac{x}{y} \left| \lim_{y \to 0} \frac{y_{0} + 0}{y_{0} + 0} \right|$ (iii) Observe: $\left(\frac{x_n}{y_n}\right) = \left(x_n \cdot \frac{1}{y_n}\right)$. by (ii), it suffices to prove

Since
$$
\lim_{n \to \infty} (y_n) = 9
$$
, taking $\frac{5}{191^{2}} > 0$
\n
$$
\exists K^{1} \in N \text{ set } (y_n - y) \in \frac{5}{191^{2}} \text{ and } K'
$$
\n\nChoose $K := \max \{ \tilde{K}, K^{1} \} \in N$, then $\forall n \geq K$,
\n
$$
\left| \frac{1}{y_n} - \frac{1}{y} \right| = \left| \frac{y_n - y}{y_n y} \right| = \frac{1}{191} \cdot \frac{1}{191} \cdot 191 - 91
$$
\n
$$
\leq \frac{1}{191/2} \cdot \frac{1}{191} \cdot \frac{5}{191^{2}} = \epsilon
$$
\n
$$
\frac{1}{191} \cdot \frac{5}{191^{2}} = \epsilon
$$
\n
$$
\frac{1}{191} \cdot \frac{5}{191^{2}} = \frac{1}{191} \cdot \frac{1}{191} \cdot 191 - 91 = 9
$$
\n
$$
\frac{1}{191} \cdot \frac{5}{191^{2}} = \frac{1}{191} \cdot \frac{1}{191} \cdot 191 - 91 = 9
$$

Remark: The argument is in (iii) are necessary.

\nE.g.
$$
(y_n) = \left(\frac{1}{n}\right) \rightarrow 9 = 0
$$

\nBut $\left(\frac{1}{y_n}\right) = (n)$ is divergent.

\nRemark: The "converse" is $\frac{N}{2!}$ time in general.

\nE.g. $(ons; dev - (Xn) = \left(\frac{1}{n}\right), (y_n) = (n)$.

\nAlthough $(X_n y_n) = \left(\frac{1}{n} \cdot n\right) = (1) \rightarrow 1$.

\nbut (y_n) is divergent!

Thm: Let (xn), (yn) be two convergent seg. s.t. \cdots (†) $X_n \leq Y_n$ $\forall n \in \mathbb{N}$ $lim(x_n) \leq l$ im (y_n) . THEN: Remark: Even it we assume that the inequality is strict in (t). ie $X_n < Y_n$ $\forall n \in \mathbb{N}$ then we can still only conclude that $lim (x_n) \leq lim (y_n)$ F_3 .) $D < \frac{1}{n}$ Vn F_1N $g_{\mu}T$ $0 = 2 \sin(\frac{1}{n})$ 'Hoof : By Limit Thm. it suffice to show Clarin: (Zu) conversent seg. st Zn 20 Vn EIN \Rightarrow lim (in) = = = > 0. Pictures Zn 20 Un EIN $\leftarrow \rightarrow \rightarrow \rightarrow \rightarrow \mathbb{R}$ $\left| \cdots \right|$

 \bullet

2

Proof by contradiction! Suppose NOT, then Z<0. Then. 12120 . Consider $E := \frac{|\zeta|}{2} > 0$, by def² of limit. I K GM sit. $|Z_{n}-Z| < \Sigma = \frac{|\zeta|}{2}$ $\forall n \zeta K$. => $\frac{2}{5}$ and $\frac{121}{2}$ = $-\frac{121}{2}$ c 0 fin ?K. This contradiets Zn30 VnEIN.

o