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Recall lim xn E R Iff E K defI
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A seq xn is said to be convergent if such an c IR

exists hence unique Otherwise divergent

Question 1 When does lim Xu exist
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Recall IR is the complete ordered field

Q How is the limiting process compatible with

these structures

Limit Theorems
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Renmark The limits exist and are equal to the

expected value
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Take M i max M ix I DO
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Remark The assumptions in Ciii are necessary

E.g yn ht y 0

But In n is divergent

Remark The converse is NIT true in general
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Proof by contradiction i SupposeNOT
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